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Abstract

The multibody-system modelling and simulation of a class of biaxial accelerometers pro-
duced with MEMS technology, dubbed triangular biaxial accelerometers (TBA), are the sub-
ject of this report. The model is obtained using the methodology of the Natural Orthogonal
Complement (NOC), in terms of the independent coordinates of the proof-mass displacements
and the structural parameters, which is then linearized under the assumption of small-angle
rotations of the limbs connecting the proof mass to the accelerometer frame. The simulation
results are validated with FEA.

In addition, dimensional optimization and sensitivity analysis is conducted for the TBA
structure, which achieves a higher frequency ratio with a lower aspect ratio. The FEA
results validate the NOC model, which offers insights into the TBA dynamic behaviour under
acceleration fields, for different non-proportional dimensions of the TBA structure.

Keywords: accelerometer; dynamic model; natural orthogonal complement;
dimensional optimization; vibration test
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1 Introduction

The TBA architecture stems from previous work conducted at McGill University on what
was termed Simplicial Biaxial Accelerometers (SBAs) [1, 2], whereby the proof-mass can be any
polygon within a frame that follows the shape of the proof-mass. The mathematical model will be
derived for the layout shown in Fig. 1, a design proposed by Zou [2].
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Figure 1: Sketch of the TBA architecture

The accelerometer of Fig. 1 is intended to measure the in-plane acceleration components of the
center of mass (c.o.m.) of the triangular proof mass, while filtering the out-of-plane component.
To this end, the proof mass is suspended from its frame by means of three identical linkages,
termed the limbs of the device. Each limb is made of a series array of two parallelogram linkages
(PL), which thus allow the proof mass to translate in its plane without rotating. The whole device
is fabricated as a compliant mechanism [3]. Because of their shape and their function, the PL
are regarded as joints, capable of constraining the motion of two rigid links, one distal, the other
proximated to the base, to undergo a relative translation under which every point of one of these
two links traces a circle on the other link. In the realm of parallel-kinematics machines (PKM),
these parallelogram linkages are termed Π-joints [4–7].

The ΠΠ-limbs [2, 8] of the this TBA architecture shown in Fig. 1 make the assumption rea-
sonable that the proof-mass undergoes pure translation, if the angles of rotation of the limbs of
the compliant mechanism are small. To derive the mathematical model, the methodology of the
Natural Orthogonal Complement (NOC) is used [9–11], which enables us to express the kinematic
constraints as a linear homogeneous system of equations in the vector array of body twist—six-
dimensional arrays involving angular and point velocity vectors.
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2 Kinematics

Figure 1 serves to illustrate the basic parameters and to identify the rigid bodies composing
the TBA. The depth w is measured in the direction normal to the plane of the figure. Numbers
are labelled for the rigid-bodies in the following order: the four rigid bodies under pure in-plane
translation are numbered 1 to 4, with the bar-shaped rigid-bodies counter-clockwise and the proof-
mass as rigid-body 4; the intermediate rigid-bodies, of axes parallel to the sides of the triangles,
move under both translation and rotation; these are numbered around the bar-shaped rigid-bodies
from left to right and top to bottom.

The coordinate frames introduced to derive the kinematics of the TBA are described below.
Let F1 {O,X1, Y1, Z1} be the frame with its origin O located at the centre of the outer frame and
its Y1-axis pointing to vertex R1; let frames F2 and F3 be the counterparts of F1 with their Y2-
and Y3-axes pointing to vertices R2 and R3, respectively. Because of the periodic symmetry of
the accelerometer, the geometric and kinematic relations derived for limb-1 in F1 are the same as
those derived for limbs 2 and 3 in frames F2 and F3, respectively. Let F1 be the base frame.

We define the displacement of the centre of the proof-mass and its time derivative as

q ≡ [xc, yc, zc]
T, q̇ ≡ [ẋc, ẏc, żc]

T. (1)

which are the three independent generalized coordinates and generalized velocities, needed to
describe the posture and the gesture, respectively, of the three-dof mechanical system.

The twist ti of the ith rigid body is given by

ti ≡
[
ωi
vi

]
, (2)

where ωi and vi are, respectively, the angular velocity vector and the velocity vector of the c.o.m.
of the ith rigid body in its local frame.

The twists ti are expressed as linear transformations of q̇ in the form

ti = Ti(α)q̇, (3)

where the 6 × 3 twist-shaping matrix (TSM) Ti(α) can be found from the 6-dimensional twist
array ti in terms of the generalized-velocity vector q̇. Argument α of the TSM is defined below.

The velocity vi and the angular velocity ωi for each rigid body are derived in terms of q̇ and α,
where α = [α1, α2, α3, α4, α5, α6, β1, β2, β3]

T, whose components are shown in Fig. 2. Combining
these two vectors yields the twist ti of the ith rigid body, which can be used to find the TSM Ti(α).
After the TSMs for rigid bodies 4, 1, 5, 6, 7, 8 are obtained, those of the other rigid bodies have
the same expressions, as represented in their local frame; then, the TSMs in the reference frame
are obtained simply by coordinate transformation.

In Fig. 2, β2 and β3 are the out-of-plane angles for the other two ΠΠ-limbs in the same pattern
with β1. Ma1 is the midpoint of side Q2Q3 of the proof-mass and Ms1 is the midpoint of side R2R3

of the TBA frame; by the same token, Ma2 is the midpoint of side Q1Q3 of the proof-mass, Ms2

is the midpoint of side R1R3 of the TBA frame, and Mb2 is the midpoint of bar 2; Ma3 is the
midpoint of side Q1Q2 of the proof-mass, Ms3 is the midpoint of side R1R2 of the TBA frame,
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and Mb3 is the midpoint of bar 3. Let h be the distance between Mai and Mbi, which equals the
distance between Mbi and Msi, for i = 1, 2, 3; then, hα is the projection of h onto the X-Y plane at
the home posture and hβ is the projection of h on the Y -Z plane at the home position. Moreover,
the out-of-plane displacement is much smaller than its in-plane counterpart, which allows us to
write hα ≈ h under the assumption of small rotations of the limbs, i.e., h =

√
6(s − a)/12 and

ha1 = h sinα2, hs1 = h sinα1.
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Figure 2: Geometric relations in the TBA: (a) in-plane; (b) out-of-plane

Rigid Body 1

The motion of this body is analyzed in F1. The rotation matrix from F1 to F is the 3 × 3
identity matrix 1. Body-1 undergoes 3D translations and an out-of-plane rotation along the X1-

axis. Hence, the angular velocity of this body is ω1 =
[
β̇1, 0, 0

]T
. Subscripted brackets 1 indicate

that the array inside is expressed in F1.
The position vector c1 in F1 has the representation

[ c1 ]1 =


h(cosα1 + cosα2)

h(sinα1 + sinα2)−
√

3

6
(s− a)

(ha1 + hs1) sin β1 = h(sinα1 + sinα2) sin β1

 . (4)

The position vectors of Ma1 and Ms1 are given below:
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[ξa1]1 =


[xc]1

[yc]1 −
√

3

6
a

[zc]1

 , [ξs1]1 =


0

−
√

3

6
s

0

 . (5)

The position vector of point Mb1 in F1 is readily obtained as

[ξ1]1 = [ξs1]1 +

 h cosα1

h sinα1

hs1 sin β1

 =


h cosα1

h sinα1 −
√

3

6
s

h sinα1 sin β1

 . (6)

Therefore, the velocity of rigid body 1 is

[v1]1 = [ξ̇1]1 =

 −α̇1h sinα1

α̇1h cosα1

α̇1h cosα1 sin β1 + β̇1h sinα1 cos β1

 , (7)

and the twist t1 becomes

[t1]1 =


0 0 1
0 0 0
0 0 0

−h sinα1 0 0
h cosα1 0 0

h cosα1 sin β1 0 h sinα1 cos β1


 α̇1

α̇2

β̇1

 = T01α̇1. (8)

Moreover, from the geometric relations (4), the time derivatives α̇1, α̇2 and β̇1 can be expressed
in terms of q̇, the velocity array of the proof-mass,i.e., in terms of the generalized velocities, as

α̇1 = R1 [q̇]1 , (9)

where

R1 =


− cosα2

h sin(α1 − α2)
− sinα2

h sin(α1 − α2)
0

cosα1

h sin(α1 − α2)

sinα1

h sin(α1 − α2)
0

0 − sin β1
h cos β1(sinα1 + sinα2)

1

h cos β1(sinα1 + sinα2)

 .

Hence, the TSM of rigid body 1 in F1 is

[T1]1 = T01R1. (10)
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Rigid Body 2

The motion of this body is analyzed in F2. Let Q21 be the 3 × 3 rotation matrix from F2 to
F , i.e.,

Q21 =


cos

(
2

3
π

)
− sin

(
2

3
π

)
0

sin

(
2

3
π

)
cos

(
2

3
π

)
0

0 0 1

 =


−1

2
−
√

3

2
0

√
3

2
−1

2
0

0 0 1

 . (11)

Since body-2 undergoes pure in-plane translational motion, the angular velocity of this body is

ω2 =
[
β̇2, 0, 0

]T
. From the isotropy of the TBA, the expression of the position vector ξb2 of point

Mb2 in F2 is similar to ξb1 in F1, i.e.,

[ξ2]2 = [ξs2]2 +

 h cosα3

h sinα3

hs2 sin β2

 =


h cosα3

h sinα3 −
√

3

6
s

h sinα3 sin β2

 , (12)

where the bracket with subscript 2 indicates that the vector-components are expressed in F2.
Moreover, ξs2 is the position vector of Ms2.

Therefore, the velocity of rigid body 2 is

[v2]2 = [ξ̇2]2 =

 −α̇3h sinα3

α̇3h cosα3

α̇3h cosα3 sin β2 + β̇2h sinα3 cos β2

 , (13)

and the twist t2 becomes

[t2]2 =


0 0 1
0 0 0
0 0 0

−h sinα3 0 0
h cosα3 0 0

h cosα3 sin β2 0 h sinα3 cos β2


 α̇3

α̇4

β̇2

 = T02α̇2. (14)

Moreover, from the geometric relations (4), the time derivatives α̇3, α̇4 and β̇2 can be expressed
in terms of q̇ as

α̇2 = R2 [q̇]2 , (15)
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where

R2 =


− cosα4

h sin(α3 − α4)
− sinα4

h sin(α3 − α4)
0

cosα3

h sin(α3 − α4)

sinα3

h sin(α3 − α4)
0

0 − sin β2
h cos β2(sinα3 + sinα4)

1

h cos β2(sinα3 + sinα4)

 .

Hence, the TSM of rigid body 2 in F2 is

[T2]2 = T02R2. (16)

Rigid Body 3

The motion of this body is analyzed in F3. Let Q31 be the 3 × 3 rotation matrix from F3 to
F , i.e.,

Q31 =


cos

(
−2

3
π

)
− sin

(
−2

3
π

)
0

sin

(
−2

3
π

)
cos

(
−2

3
π

)
0

0 0 1

 =


−1

2

√
3

2
0

−
√

3

2
−1

2
0

0 0 1

 . (17)

Since body-3 undergoes pure in-plane translational motion, the angular velocity of this body is

ω3 =
[
β̇3, 0, 0

]T
. From the isotropy of the TBA, the expression of the position vector ξb3 of point

Mb3 in F3 is similar to ξb1 in F1, i.e.,

[ξ3]3 = [ξs3]3 +

 h cosα5

h sinα5

hs3 sin β3

 =


h cosα5

h sinα5 −
√

3

6
s

h sinα5 sin β3

 , (18)

where the bracket with subscript 3 indicates that the vector-components are expressed in F3.
Moreover, ξs3 is the position vector of Ms3.

Therefore, the velocity of rigid body 3 is

[v3]3 = [ξ̇3]3 =

 −α̇5h sinα5

α̇5h cosα5

α̇5h cosα5 sin β3 + β̇3h sinα5 cos β3

 , (19)

and the twist t3 becomes
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[t3]3 =


0 0 1
0 0 0
0 0 0

−h sinα5 0 0
h cosα5 0 0

h cosα5 sin β3 0 h sinα5 cos β3


 α̇5

α̇6

β̇3

 = T03α̇3, (20)

Moreover, from the geometric relations (4), the time derivatives α̇5, α̇6 and β̇3 can be expressed
in terms of q̇ as

α̇3 = R3 [q̇]3 , (21)

where

R3 =


− cosα6

h sin(α5 − α6)
− sinα6

h sin(α5 − α6)
0

cosα5

h sin(α5 − α6)

sinα5

h sin(α5 − α6)
0

0 − sin β3
h cos β3(sinα5 + sinα6)

1

h cos β3(sinα5 + sinα6)

 .

Hence, the TSM of rigid body 3 in F3 is

[T3]3 = T03R3. (22)

Rigid Body 4

Rigid body 4, the proof-mass, is analyzed in the reference frame F . Since body 4 undergoes
pure translational motion in and out of the plane, the angular velocity of this body is ω4 = 03×1.
The expression of the position vector ξ4 in F is

ξ4 =

 xc
yc
zc

 = q. (23)

Therefore, the velocity of rigid body 4 is

v4 = q̇, (24)

and the twist t4 becomes

t4 =

[
03×3

13×3

]
q̇ = T4q̇. (25)
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Rigid Body 5

Let φ, θ, ψ be the small angles of rotation in the roll, pitch, yaw direction, respectively. Rigid
body 5 is analyzed in F1. The angles of rotation of body 5 are

φ5 = β1, θ5 = 0, ψ5 = α2 − γ. (26)

Since γ is constant, the angular velocity ω5 of body 5 is

ω5 =
[
φ̇5, θ̇5, ψ̇5

]
=
[
β̇1, 0, α̇2

]T
. (27)

The position vector ξ5 derived from the geometric relation shown in Fig. 2 is given as

[ξ5]1 = [ξb1]1 +
1

2
([ξa1]1 − [ξb1]1)−

[
b− c

2
, 0, 0

]T
+

[
d

4
+ l,

d

4
, 0

]T

=
1

2


h cosα1 + [xc]1 − b+ c+ d/2 + 2l

h sinα1 + [yc]1 −
√

3

6
(s+ a) + d/2

h sinα1 sin β1 + [zc]1

 , (28)

in which the last two terms of the first row compensate the deviations caused by the geometric
simplification of the ΠΠ-limb.

Therefore, the velocity of body 5 is

[v5]1 = [ξ̇5]1 =


−α̇1h sinα1 −

1

2
α̇2h sinα2

α̇1h cosα1 +
1

2
α̇2h cosα2

α̇1h cosα1 sin β1 +
1

2
α̇2h cosα2 sin β1 + β̇1h cos β1

(
sinα1 +

1

2
sinα2

)
 , (29)

and the twist t5 becomes

[t5]1 =



0 0 1
0 0 0
0 1 0

−h sinα1 −1

2
h sinα2 0

h cosα1
1

2
h cosα2 0

h cosα1 sin β1
1

2
h cosα2 sin β1 h cos β1

(
sinα1 +

1

2
sinα2

)



 α̇1

α̇2

β̇1

 = T05α̇1. (30)

Hence, the TSM of body-5 in F1 is

[T5]1 = T05R1. (31)
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Rigid Body 6

Similar to rigid body 5, the angular velocity of body 6 is

ω6 = ω5. (32)

The position vector ξ6 derived from the geometric relation shown in Fig. 2 is given as

[ξ6]1 = [ξb1]1 +
1

2
([ξa1]1 − [ξb1]1) +

[
b− c

2
, 0, 0

]T
+

[
d

4
+ l,

d

4
, 0

]T

=
1

2


h cosα1 + [xc]1 + b− c+ d/2 + 2l

h sinα1 + [yc]1 −
√

3

6
(s+ a) + d/2

h sinα1 sin β1 + [zc]1

 . (33)

Therefore, the velocity of body 6 is

[v6]1 = [ξ̇6]1 = [v5]1, (34)

the twist t6 and the TSM T6 of body 6 in F1 then being

[t6]1 = [t5]1, [T6]1 = [T5]1 = T05R1. (35)

Rigid Body 7

Rigid body 7 is analyzed in F1. The angles of rotation of body 7 are

φ5 = β1, θ7 = 0, ψ7 = α1 − (π − γ). (36)

The angular velocity of body 7 is

ω7 =
[
φ̇7, θ̇7, ψ̇7

]
=
[
β̇1, 0, α̇1

]T
. (37)

The position vector ξ7 derived from the geometric relation shown in Fig. 2 is given as

[ξ7]1 = [ξs1]1 +
1

2
([ξb1]1 − [ξs1]1)−

[
b− c

2
, 0, 0

]T
+

[
d

4
+ l,−d

4
, 0

]T

=
1

2


h cosα1 − b+ c+ d/2 + 2l

h sinα1 −
√

3

3
s− d/2

h sinα1 sin β1

 . (38)

Therefore, the velocity of body 7 is

[v7]1 = [ξ̇7]1 =
1

2

 −α̇1h sinα1

α̇1h cosα1

α̇1h cosα1 sin β1 + β̇1h sinα1 cos β1

 , (39)
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and the twist t7 becomes

[t7]1 =



0 0 1
0 0 0
1 0 0

−1

2
h sinα1 0 0

1

2
h cosα1 0 0

1

2
h cosα1 sin β1 0

1

2
h sinα1 cos β1



 α̇1

α̇2

β̇1

 = T07α̇1. (40)

Hence, the TSM of body-7 in F1 is

[T7]1 = T07R1. (41)

Rigid Body 8

Similar to rigid body 7, the angular velocity of rigid body 8 is

ω8 = ω7. (42)

The position vector ξ8 derived from the geometric relation shown in Fig. 2 is given as

[ξ8]1 = [ξs1]1 +
1

2
([ξb1]1 − [ξs1]1) +

[
b− c

2
, 0, 0

]T
+

[
d

4
+ l,−d

4
, 0

]T

=
1

2


h cosα1 + b− c+ d/2 + 2l

h sinα1 −
√

3

3
s− d/2

h sinα1 sin β1

 . (43)

Therefore, the velocity of body 8 is

[v8]1 = [ξ̇8]1 = [v7]1, (44)

and the twist t8 and the TSM T8 of body 8 in F1 are

[t8]1 = [t7]1, [T8]1 = [T7]1 = T07R1. (45)

Rigid Body 9

The motion of this body is analyzed in F2. Similar to rigid body 5, the angles of rotation of
body 9 are

φ9 = β2, θ9 = 0, ψ9 = α4 − γ. (46)

The angular velocity of body-9 is
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ω9 =
[
φ̇9, θ̇9, ψ̇9

]
=
[
β̇2, 0, α̇4

]T
. (47)

From the isotropy feature of the TBA, the expression for the position vector ξ9 in F2 is similar
to ξ5 in F1, i.e.,

[ξ9]2 = [ξb2]2 +
1

2
([ξa2]2 − [ξb2]2)−

[
b− c

2
, 0, 0

]T
+

[
d

4
+ l,

d

4
, 0

]T

=
1

2


h cosα3 + [xc]2 − b+ c+ d/2 + 2l

h sinα3 + [yc]2 −
√

3

6
(s+ a) + d/2

h sinα3 sin β2 + [zc]2

 , (48)

where ξa2 is the position vector of Ma2.
Therefore, the velocity of body 9 is

[v9]2 =


−α̇3h sinα3 −

1

2
α̇4h sinα4

α̇3h cosα3 +
1

2
α̇4h cosα4

α̇3h cosα3 sin β2 +
1

2
α̇4h cosα4 sin β2 + β̇2h cos β2

(
sinα3 +

1

2
sinα4

)
 , (49)

and the twist t9 becomes

[t9]2 =



0 0 1
0 0 0
0 1 0

−h sinα3 −1

2
h sinα4 0

h cosα3
1

2
h cosα4 0

h cosα3 sin β2
1

2
h cosα4 sin β2 h cos β2

(
sinα3 +

1

2
sinα4

)



 α̇3

α̇4

β̇2

 = T09α̇2. (50)

Hence, the TSM of body 9 in F2 is

[T9]2 = T09R2. (51)

Rigid Body 10

The motion of this body is analyzed in F2. Similar to rigid body 9, the angular velocity of
body 10 is

ω10 = ω9. (52)
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The position vector ξ10 in F2 is

[ξ10]2 = [ξb2]2 +
1

2
([ξa2]2 − [ξb2]2) +

[
b− c

2
, 0, 0

]T
+

[
d

4
+ l,

d

4
, 0

]T

=
1

2


h cosα3 + [xc]2 + b− c+ d/2 + 2l

h sinα3 + [yc]2 −
√

3

6
(s+ a) + d/2

h sinα3 sin β2 + [zc]2

 . (53)

Therefore, the velocity of body 10 is

[v10]2 = [v9]2, (54)

and the twist t10 and the TSM T10 of body-10 in F2 are

[t10]2 = [t9]2, [T10]2 = [T9]2 = T09R2. (55)

Rigid Body 11

The motion of this body is analyzed in F2. Similar to rigid body 7, The angles of rotation of
body 11 are

φ11 = β2, θ11 = 0, ψ11 = α3 − (π − γ). (56)

The angular velocity of body 11 is

ω11 =
[
φ̇11, θ̇11, ψ̇11

]
=
[
β̇2, 0, α̇3

]T
. (57)

The position vector ξ11 derived from the geometric relation shown in Fig. 2 is given as

[ξ11]2 = [ξs2]2 +
1

2
([ξb2]2 − [ξs2]2)−

[
b− c

2
, 0, 0

]T
+

[
d

4
+ l,−d

4
, 0

]T

=
1

2


h cosα3 − b+ c+ d/2 + 2l

h sinα3 −
√

3

3
s− d/2

h sinα3 sin β2

 . (58)

Therefore, the velocity of body 11 is

[v11]2 = [ξ̇11]2 =
1

2

 −α̇3h sinα3

α̇3h cosα3

α̇3h cosα3 sin β2 + β̇2h sinα3 cos β2

 , (59)

and the twist t11 becomes

13



[t11]2 =



0 0 1
0 0 0
1 0 0

−1

2
h sinα3 0 0

1

2
h cosα3 0 0


 α̇3

α̇4

β̇2

 = T011α̇2. (60)

Hence, the TSM of body 11 in F2 is

[T11]2 = T011R2. (61)

Rigid body 12

Similar to rigid body 11, the angular velocity of rigid body 12 is

ω12 = ω11. (62)

The position vector ξ12 derived from the geometric relation shown in Fig. 2 is given as

[ξ12]1 = [ξs2]2 +
1

2
([ξb2]2 − [ξs2]2) +

[
b− c

2
, 0, 0

]T
+

[
d

4
+ l,−d

4
, 0

]T

=
1

2


h cosα3 + b− c+ d/2 + 2l

h sinα3 −
√

3

3
s− d/2

h sinα3 sin β2

 . (63)

Therefore, the velocity of body 12 is

[v12]2 = [v11]2, (64)

and the twist t12 and the TSM T12 of body 12 in F2 are

[t12]2 = [t11]2, [T12]2 = [T11]2 = T011R2. (65)

Rigid Body 13

The motion of this body is analyzed in F3. Similar to rigid body 5, the angles of rotation of
body-13 are

φ13 = β3, θ13 = 0, ψ13 = α6 − γ. (66)

The angular velocity of body-13 is

ω13 =
[
φ̇13, θ̇13, ψ̇13

]
=
[
β̇3, 0, α̇6

]T
. (67)
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From the isotropy of the TBA, the expression of the position vector ξ13 in F3 is similar to ξ5
in F1, i.e.

[ξ13]3 = [ξb3]3 +
1

2
([ξa3]3 − [ξb3]3)−

[
b− c

2
, 0, 0

]T
+

[
d

4
+ l,

d

4
, 0

]T

=
1

2


h cosα5 + [xc]3 − b+ c+ d/2 + 2l

h sinα5 + [yc]3 −
√

3

6
(s+ a) + d/2

h sinα5 sin β3 + [zc]3

 , (68)

where ξa3 is the position vector of Ma3.
Therefore, the velocity of body 9 is

[v13]3 =


−α̇5h sinα5 −

1

2
α̇6h sinα6

α̇5h cosα5 +
1

2
α̇6h cosα6

α̇5h cosα5 sin β3 +
1

2
α̇6h cosα6 sin β3 + β̇3h cos β3

(
sinα5 +

1

2
sinα6

)
 , (69)

and the twist t13 becomes

[t13]3 =



0 0 1
0 0 0
0 1 0

−h sinα5 −1

2
h sinα6

h cosα5
1

2
h cosα6

h cosα5 sin β3
1

2
h cosα6 sin β3 h cos β3

(
sinα5 +

1

2
sinα6

)



 α̇5

α̇6

β̇3

 = T013α̇3. (70)

Hence, the TSM of body 13 in F3 is

[T13]3 = T013R3. (71)

Rigid Body 14

The motion of this body is analyzed in F3. Similar to rigid body 13, the angular velocity of
body 14 is

ω14 = ω13. (72)

The position vector ξ14 in F3 is
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[ξ14]3 = [ξb3]3 +
1

2
([ξa3]3 − [ξb3]3) +

[
b− c

2
, 0, 0

]T
+

[
d

4
+ l,

d

4
, 0

]T

=
1

2


h cosα5 + [xc]3 + b− c+ d/2 + 2l

h sinα5 + [yc]3 −
√

3

6
(s+ a) + d/2

h sinα5 sin β3 + [zc]3

 . (73)

Therefore, the velocity of body 14 is

[v14]3 = [v13]3. (74)

and the twist t14 and the TSM T14 of body 14 in F3 are

[t14]3 = [t13]3, [T14]2 = [T13]3 = T013R3. (75)

Rigid Body 15

The motion of this body is analyzed in F3. Similar to rigid body 7, the angles of rotation of
body-15 are

φ15 = β3, θ15 = 0, ψ15 = α5 − (π − γ). (76)

The angular velocity of body 15 is

ω15 =
[
φ̇15, θ̇15, ψ̇15

]
=
[
β̇3, 0, α̇5

]T
. (77)

The position vector ξ15 derived from the geometric relation shown in Fig. 2 is given as

[ξ15]3 = [ξs3]3 +
1

2
([ξb3]3 − [ξs3]3)−

[
b− c

2
, 0, 0

]T
+

[
d

4
+ l,−d

4
, 0

]T

=
1

2


h cosα5 − b+ c+ d/2 + 2l

h sinα5 −
√

3

3
s− d/2

h sinα5 sin β3

 . (78)

Therefore, the velocity of body 15 is

[v15]3 = [ξ̇15]3 =
1

2

 −α̇5h sinα5

α̇5h cosα5

α̇5h cosα5 sin β3 + β̇3h sinα5 cos β3

 , (79)

and the twist t15 becomes
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[t15]3 =



0 0 1
0 0 0
1 0 0

−1

2
h sinα5 0 0

1

2
h cosα5 0 0


 α̇5

α̇6

β̇3

 = T015α̇3. (80)

Hence, the TSM of body 15 in F3 is

[T15]3 = T015R3. (81)

Rigid Body 16

Similar to rigid body 15, the angular velocity of rigid body 16 is

ω16 = ω15. (82)

The position vector ξ16 derived from the geometric relation shown in Fig. 2 is given as

[ξ16]3 = [ξs3]3 +
1

2
([ξb3]3 − [ξs3]3) +

[
b− c

2
, 0, 0

]T
+

[
d

4
+ l,−d

4
, 0

]T

=
1

2


h cosα5 + b− c+ d/2 + 2l

h sinα5 −
√

3

3
s− d/2

h sinα5 sin β3

 . (83)

Therefore, the velocity of body 16 is

[v16]3 = [v15]3, (84)

and the twist t16 and the TSM T16 of body 16 in F3 are

[t16]3 = [t15]3, [T16]3 = [T15]3 = T015R3. (85)

3 Dynamics

The mathematical model of the TBA under study is of the general form [12]:

Mq̈ +Cq̇ +Dq̇ +Kq = τ , (86)

where M is the 3 × 3 generalized inertia matrix, C the 3 × 3 generalized matrix of Coriolis and
centrifugal forces, D the damping matrix, K the generalized stiffness matrix and τ the vector of
generalized force, all given below:
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M ≡
16∑
i=1

T T
i MiTi, C ≡

16∑
i=1

(T T
i MiṪi + T T

i WiMiTi),

K ≡
16∑
i=1

T T
i KiTi, τ ≡

16∑
i=1

T T
i wi, Wi ≡

[
Ωi 0
0 0

]
,

(87)

where Mi is the 6 × 6 inertia dyad [12] of ith rigid body; Wi is the 6 × 6 angular velocity dyad
of the ith rigid body, corresponding to the twist ti; Ki is the 6 × 6 stiffness matrix of the elastic
feet attached to the ith rigid body; wi is the wrench acting on the ith body; and Ωi is the 3× 3
cross-product matrix1 of the angular-velocity vector ωi of the ith rigid body.

The expression of the generalized stiffness matrix K in Eq. (87) is derived based on the as-
sumption of small-amplitude rotations of the limbs. By multiplying both sides of Eq. (2) by the
time increment ∆t, the pose increment of the ith leg can be represented as a linear transformation
given by Ti of the increment of the independent generalized position vector.

The stiffness matrix of the limbs with two feet can be expressed as

Ki = diag(kout, 0, kin, 0, 0, 0), i = 5, 6, . . . , 16, (88)

where kin and kout are, respectively, the in-plane and the out-of-plane stiffness coefficients of a leg
with two feet, which compose the generalized stiffness matrix of the TBA system.

Linear damping from the Rayleigh dissipation function is used for the TBA damping model,
denoted by the damping matrix D. It is assumed that all damping comes from air drag within
the gap between the proof-mass and the handle wafer; two major types of damping that occur in
the micro-scale TBA are slide-film and squeezed-film damping [1, 2].

4 Modal Analysis

4.1 Parameters

Here we derive the expressions for the inertia parameters of the rigid bodies. In the X-Y plane,
the bar-shaped rigid bodies are basically parallelepipeds, the limbs parallelograms and the proof-
mass an equilateral triangular prism. The mass of each bar, proof-mass, leg, and the moment of
inertia of each bar and leg are expressed in terms of the structural parameters, namely

mbar = ρbdw, mpm =

√
3

4
ρa2w, mleg =

√
2

2
ρecw, Ibarx =

1

12
mbar

(
d2 + w2

)
,

Ilegx =
1

12
mleg

(
e2 + w2

)
, Ilegy =

1

12
mleg

(
w2 + c2

)
, Ilegz =

1

12
mleg

(
e2 + c2

)
.

(89)

where ρ is the material density; Ilegx, Ilegy, Ilegz are defined around the limb-central line along the
width, length, and depth sides, respectively; Ibarx is defined around the bar-central line along the
length side. The moments of inertia will be transformed into the local frames with respect to the

1This means that Ωip ≡ ωi × p, for any p ∈ R3.
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angle γ of the limbs. Other moments of inertia of the proof-mass and the bar-shaped rigid bodies
need not be expressed explicitly because they undergo pure translation.

The overall stiffness of the TBA depends on the generalized stiffness of each leg with two feet,
a good estimation of which is obtained from the smallest stiffnesses among the six stiffnesses:
bending, shearing and torsional stiffness of leg and foot. For example, for the in-plane motion, the
bending stiffness of the foot kzfb is one order of magnitude smaller than the others; therefore, the
in-plane stiffness coefficient kin is found based on the bending stiffness of the foot. By the same
token, the out-of-plane stiffness coefficient kout is found based on the torsional stiffnesses of the leg
,kxlt, and the foot kxft, since they are generally smaller for the out-of-plane motion. With the two
feet working as torsional springs in parallel around the Z-axis and in series around the X-axis, the
stiffnesses kin and kout are derived as

kin = 2kzfb =
Ewt3m

2l
, kout =

1
1

kxft/2
− 1
kxlt

=
12Ew3ctm

2lc−
√

2etm
. (90)

4.2 Model Linearization

We linearize the inertia matrix M (α) and the stiffness matrix K(α) from the assumption
of small-amplitude rotations of the limbs, so that estimates of the natural frequencies of the
undamped TBA system will be available. The value of α at the home posture is defined as
α0
1 = α0

3 = α0
5 = 3π/4, α0

2 = α0
4 = α0

6 = π/4 and β0
1 = β0

2 = β0
3 = 0. Substituting these values into

the TSMs, the generalized inertia and stiffness matrices become

Me =

[
Min12×2 02

0T2 Mout

]
, Ke =

[
Kin12×2 02

0T2 Kout

]
, (91)

where 02 denotes the 2-dimensional zero vector; the in-plane entries Min, Kin and the out-of-plane
entries Mout, Kout for the translational motion of the proof-mass are

Min = mpm +
3mbar

2
+

9mleg

2
+

6Ilegz
h2

, Kin =
6kin
h2

,

Mout = mpm +
3

4
mbar +

15

4
mleg +

3(Ilegx + Ilegy)

h2
+

3Ibarx
2h2

, Kout =
6kout
h2

.

(92)

Moreover, mpm, mbar, mleg are, respectively, the masses of: the proof-mass, the bars, and the
limbs; Ilegx, Ilegy, Ilegz are the moments of inertia of the limbs around their central line: along the
width side, the length side, and the depth side, respectively; Ibarx is the moment of inertia of the
bars around their central line along the length side. Hence, all moments of inertia are defined at
the c.o.m.

The matrix of generalized Coriolis and centrifugal forces C(α) takes the form

Ce =

 C11 C12 0
C12 −C11 0
0 0 0

 , (93)

where
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C11 = c1ẋc − c2ẏc, C12 = −c2ẋc − c1ẏc,

c1 =
3

8

√
2(mbar + 2mleg)

h
, c2 =

3

8

√
2(mbar +mleg)

h
+

3

2

√
2Ilegz
h3

.

Matrix Ce is negligible when compared with other terms in Eq. (86), which will be explained
later in Section 5.

To analyze the natural frequency of the undamped TBA system in Eq. (86), the positive-definite

square root [12] of Me, represented as Ne ≡
√
Me, will be used. Then, the frequency matrix Λ

and the natural-frequency array ω of the system are

Λ ≡
√
N−1

e KeN−1
e , ω ≡ eig(Λ) = [ωin, ωin, ωout]

T , (94)

where eig(·) denotes the array of eigenvalues of matrix (·). Moreover, ωin and ωout can be derived
as

ωin =
2
√

3
√
kin√

2h2mpm + 3h2mbar + 9h2mleg + 12Ilegz
,

ωout =
2
√

6
√
kout√

4h2mpm + 3h2mbar + 15h2mleg + 12Ilegx + 12Ilegy + 6Ibarx
.

The inertia matrix Me in Eq. (91) and the natural-frequency vector ω in Eq. (94) are regarded
as accuracy indices of the parametric mathematical model, compared with the FEA results.

5 FE validation

5.1 SBA MEMS Prototype

Since the SBA can be regarded as an implementation of the TBA, the parameters of the SBA
MEMS prototype [2] are listed in Table 1 for validation of the mathematical model.

Table 1: Parameters of the SBA MEMS prototype

Parameter a s e b c d tm l w γ E (Pa) ν (Kg/m3) ρ

Value (µm) 3333 10398 700 1400 200 210 20 210 300 π/4 1.618× 1011 0.222 2330

Combined with the expressions of the structure parameters in the section of Modal Analysis,
the generalized inertia matrix Me and the generalized stiffness Ke in Eq. (91) are computed based
on the numerical values of the parameters given below:

Mmems
in = 3.9909× 10−6 (Kg), Kmems

in = 5334.7 (N/m);

Mmems
out = 3.7836× 10−6 (Kg), Kmems

out = 25492 (N/m).
(95)
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Then, the natural frequency in Eq. (94) of the TBA prototype is given by

ωmems
in = 36561 (rad/s), fmems

in =
ωn

2π
= 5818.9 (Hz),

ωmems
out = 82083 (rad/s), fmems

out =
ωn

2π
= 13064 (Hz).

(96)

We now compare the static response and the natural frequency of the SBA from the NOC
modelling with the FEA results from ANSYS.

To obtain the generalized stiffness matrix of the accelerometer, the forces are applied only at
the c.o.m. of the proof-mass. The stiffness and the frequency matrices from FEA [2] are

Kmems
fea = diag(5581.9, 5580.7, 25065.2) (N/m), fmems

fea = [5858.3, 5859.1, 12890]T (Hz), (97)

which produce the generalized inertia matrix

Mmems
fea = diag(4.1198, 4.1178, 3.8213)× 10−6 (Kg). (98)

The Bode plots of in-plane and out-of-plane frequency responses are shown in Figs. 3(a) and (b),
respectively, for comparison of the NOC analysis with the FEA results of the linearized undamped
SBA system.
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Figure 3: Bode plots of the NOC and FEA results of the MEMS prototype: (a) in-plane; (b)
out-of-plane

By comparing the inertia matrices in Eqs. (95) and (98), the percentage errors2 turn out to be
{3.13%, 3.18%, 0.99%}, respectively, for the in-plane and out-of-plane motion. For comparison, the

2(paramatric value−numerical value)/numerical value ×100%
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corresponding percentage errors without Lamé Curves are {2.41%, 2.43%, 1.10%}, respectively. By
the same token, comparing the vector of the natural frequency in Eqs. (96) and (97), the percentage
errors are {0.673%, 0.686%, 1.35%}, respectively, for the in-plane and out-of-plane motion.

5.2 Optimum TBA

It should be noted that this mathematical model is valid for TBAs of all sizes, which is shown
by a set of non-proportional dimensions optimized for the largest frequency ratio between the
non-sensitive and sensitive directions. In addition, the feet of the TBA, the thinnest component
in the architecture, is constrained to be above 25 µm to avoid fracture during micro-fabrication,
according to our experience. The thickness of the TBA is fixed according to the silicon wafer.
The results of the dimensional optimization are low-pass filtered thereafter to derive the natural
frequencies in the hecto-Hertz bandwidth.

Since the lowest non-sensitive motion is always the out-of-plane translation, the frequency ratio
f3/f1 between the out-of-plane and in-plane translations is monitored specially. The sensitivity
of the frequency ratios to the design parameters is shown in Fig. 4, in which the frequency ratio
f3/f1 is inversely proportional to all the design parameters, except for the lengths b and e of the
bar and the limb, respectively.

Figure 4: Sensitivity of the frequency ratios to the design parameters

It is shown that the frequency ratio f3/f1 is most sensitive to the width tm of the feet. The
other variable of the feet dimensions, length l, is the second influential parameter, with around
one third of the width influence. The sensitivity f3/f1 to other design parameters is smaller than
15% of the foot width.
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Figure 5: Frequency ratio f3/f1 w.r.t. the feet width tm and length l

Given that the dimensions of the feet matter most regarding the frequency ratio f3/f1, its
response chart with respect to the width tm and the length l of the feet is illustrated in Fig. 5.
Obviously, the frequency ratio f3/f1 reaches its peak when tm and l are all smallest within their
design range. However, this has to be compromised, considering the manufacturing feasibility
and the safety in operation. Therefore, a second round of dimensional optimization is conducted
around a narrower range of the design parameters, but with tm = 30 µm and b = 4 mm fixed for
manufacturing safety and size control.

The preliminary results of optimum dimensions are listed in Table 2 for further validation of
the applicability of the mathematical model.

Table 2: Optimum parameters of the TBA

Parameter a s e b c d tm l w

Value (10−6 m) 12000 28383 2931.5 4000 749.22 207.47 30 94.051 300

The frequency ratio f3/f1, after optimization, is 2.90 under the aspect ratio of w/tm = 10, while
the frequency ratio in Eq. (97) is 2.20 under the aspect ratio of 15. The aspect ratio decreases
by 33.3%, while the frequency ratio increases by 31.8%. Since the frequency ratio is identical to
the aspect ratio for a single-dof suspension, the change of frequency ratio of the biaxial TBA will
be compared with the change of the aspect ratio. In this sense, the frequency ratio increased by
65.2%.
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The FEA results of the stiffness matrix and the frequency vector are

Kopt
fea = diag(1530.3, 1531.5, 12333) N/m, foptfea = [879.7, 880.22, 2554.4]T Hz, (99)

which produce the inertia matrix

M opt
fea = diag(5.0090, 5.0070, 4.7876)× 10−5 Kg. (100)

The corresponding inertia matrix from Eq. (95) is

M opt
mth = diag(4.9948, 4.9948, 4.8400)× 10−5 Kg. (101)

The percentage errors of the inertia matrix are {0.283%, 0.244%, 1.09%}, respectively, for the
in-plane and out-of-plane motion. The percentage errors are at the same level as those in Subsec-
tion 5.1; the mathematical model is thus effective and stable for the TBA architecture.

The matrix of Coriolis and centrifugal forces is not simulated in the FEA, since C(α, q̇) is
small3 as compared with other terms in Eq. (86). Taking the optimum dimensions for example,
the coefficients c1 and c2 become 4.5353× 10−4 Kg/m and 3.2835× 10−4 Kg/m, respectively. The
displacement under an acceleration of 10g in the x-axis is approximately xc = 3.2110 × 10−6 m,
and the maximum velocity is approximately ẋc = ẍcxc/2 = 2.5100 × 10−2 m/s. In this case, the
term c1ẋc is in the order of 10−6 N, three orders of magnitude lower than the inertia and the elastic
forces. Therefore, the Coriolis and centrifugal terms are negligible.

5.3 Rapid Prototype

A scaled-up prototype produced by 3D printing was used for experimental validation of the
mathematical model. Because of the limitation of the vibration-measurement system4, only the
in-plane responses were tested.

The values of the geometric parameters of the rapid prototype are listed in Table 3.

Table 3: Geometric parameters of the TBA rapid prototype

Parameter a s e b c d tm l w

Value (mm) 80 24.96 16.79 35.12 8.72 5.04 2 5.04 13

As to the material properties, the Young modulus, Poisson ratio and density are not provided
directly from the data sheet5 for the composed digital material used for the rapid prototype. Ac-
cording to the data sheet, one of the primary materials is a rigid opaque material “VeroWhitePlus
RGH835”, which has a density of 1170-1180 Kg/m3 and a Young modulus of 2-3 GPa. The other
is a rubber-like material “TangoBlackPlus FLX980/TangoPlus FLX930”, which has a density of

3Comparison is based in the matrix Frobenius norm
4The Modal Shop 2100E11
5http://www.stratasys.com/materials/material-safety-data-sheets/polyjet/~/media/Main/Secure/Material%20

Specs%20MS/PolyJet-Material-Specs/PolyJet Materials Data Sheet.ashx
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1170-1180 Kg/m3 and an uncertain Young modulus, estimated to be 0.01-0.1 GPa, like rubber.
The Poisson ratio is presumed to be 0.3 and the proportion of the two materials to be half and
half. Therefore, a rough estimation of material properties is obtained by averaging the density and
Young modulus of the two primary materials. As a result, the Young modulus of the material is
E = 1.275× 1011 Pa, the Poisson ratio ν = 0.3 and the density of the material ρ = 1150 Kg/m3.

Combined with the parameters in Section 4.1, the evaluated entry of the generalized inertia
Min and the evaluated entry of the generalized stiffness Kin in Eq. (91) are given by

M rap
mth = 5.2596× 10−2 (Kg ·m2), K rap

mth = 131711 (N ·m/rad) (102)

Then, the in-plane natural frequency in Eq. (94) of the TBA prototype is

ωrap
mth = 1582.4 (rad/s), frapmth =

ωn

2π
= 251.84 (Hz) (103)

The displacement of the centre of the proof-mass under a 1-N force along any direction is
about 3.8297 × 10−6 m, while the result from the generalized stiffness matrix in Eq. (102) is
3.8721× 10−6 m, with an error of 1.1%. The natural frequency by FEA is f rap

fea = 250.34 Hz, while
the NOC result is f rap

mth = 251.84 Hz in Eq. (103), with an error of 0.60%.
The rapid prototype was tested on the vibration devices, as shown in Fig. 6. The frequency

range of the vibration test is 10-300 Hz with a step of 10 Hz.

(a) (b)

Figure 6: Vibration test of the rapid prototype: (a) rapid prototype; (b) vibration devices

The dynamic response of the rapid prototype is obtained from the vibration tests for different
orientations. The Bode plots are depicted in Fig. 7 for two arbitrary vertices of the prototype
frame. At low frequencies, the signal-to-noise ratio is so low that the corresponding plots are
not reliable. However, an obvious peak can be observed as the fundamental resonance frequency,
estimated to be f rap

test = 255 Hz.
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Figure 7: Test results of the frequencies

The fundamental frequencies of the rapid prototype are f rap
mth = 251.84 Hz, f rap

fea = 250.47 Hz
and f rap

test = 255 Hz, respectively, from the NOC model, FEA and tests. The three results are
compatible, the percentage error between the NOC model and test results being 1.38%.

6 Conclusions

The static response and the natural frequency from the numerical FEA and the parametric
NOC model are comparable, which reveals the feasibility and effectiveness of the proposed NOC
model. The NOC model of the TBA offers insight into its dynamic behaviour under acceleration
fields and can facilitate the control algorithm design for the closed-loop navigation system. The
inertia and the stiffness matrices are isotropic in the plane of the proof-mass; therefore, the TBA
motion in the sensitive axes can be modelled as a 1-dof system.

The isotropic structure allows us to extend the kinematic relations from one limb to the whole
TBA by coordinate transformations. In this vein, it is convenient to model other regular polygonal
structures from the TSMs derived here. Within the NOC, matrices are additive; additionally, the
matrices are identical for the parallel limbs in each ΠΠ-limb. Hence, the modelling of alternative
structures with different numbers of limbs in each ΠΠ-limb would be simplified.

The dimensional optimization of the TBA structure leads to a higher frequency ratio for a lower
aspect ratio. The sensitivity analysis provides insight into the relation between the frequency ratios
and the dimensions of the structure. The optimum dimensions from the dimensional optimization
validate the mathematical model of the TBA architecture.

The vibration tests of the scaled-up rapid prototype provide the actual fundamental frequency
in the sensitive plane of the accelerometer. Both the NOC and the FEA results are verified by
physical tests, which validates the pertinence of the mathematical model.
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